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Abstract 

 Avian pathogenic Escherichia coli (APEC) is the causative agent of colibacillosis 

resulting in economic losses in the poultry industry worldwide. A total of 168 APEC isolates, 

equal numbers from Australian and Thai broilers/broiler breeders, were identified and tested 

for their susceptibility to ten antimicrobial agents. Most of the Thai APEC isolates were 

multidrug-resistant (MDR) (60.7%) whilst Australian APEC isolates showed MDR rate of just 

10.7%. The Thai APEC isolates exhibited high resistance to tetracycline (TET) (84.5%), 

amoxicillin (AMX) (70.2%) and trimethoprim-sulfamethoxazole (SXT) (51.2%) whilst the 

Australian APEC isolates showed lower levels of resistance (TET 36.9%, AMX 29.8%, SXT 

17.86%). The 34 Thai APEC and 4 Australian APEC isolates which were resistant to nalidixic 

acid were characterised for their carriage of mutations in the quinolone resistance determining 

region of gyrA, gyrB, parC and parE. While no mutations were detected in gyrB in the Thai 

isolates, the Ser83Leu and Asp87Asn substitutions in gyrA and Ser80Ile in parC were common 

(n=9/34). In regard to the Australian isolates, the Ser83Leu and Asp678Glu substitution in 

gyrA, Pro385Ala and Ser492Asn in gyrB and Met241Ile and Asp475Glu in parC were 

identified (n=3/4). Rep-PCR analysis of the 84 Thai and 84 Australian APEC isolates showed 

16 main clusters that mostly contained isolates from both countries. Our results suggest that 

the emergence of MDR is a major concern for the Thai APEC isolates and that more prudent 

use of antimicrobial agents in Thai poultry production is required. 

Keywords: avian pathogenic Escherichia coli, colibacillosis, virulence gene, antimicrobial 

resistance, whole genome sequencing, poultry 

 

  



Introduction 

Avian pathogenic Escherichia coli (APEC) is the causative agent of colibacillosis in 

poultry, a disease which can cause a major economic impact due to high morbidity and 

mortality. The disease occurs as systemic or localised infections such as airsacculitis, 

septicemia, pericarditis, perihepatitis, salpingitis and cellulitis in chickens (Nolan et al., 2013). 

Colibacillosis is often the most frequently reported disease linked to condemnations at the 

processing plant; for example, 33% of broiler carcasses which were condemned for the disease 

at processing in Canada had lesions involved in colisepticemia (Kumor et al., 1998). 

 The molecular characterisation of APEC has been studied by several researchers in 

recent years (Gai et al., 2015; Johnson, Wannemuehler, Doetkott, et al., 2008; Kemmett et al., 

2013). Virulence-associated genes (VAGs) encode a range of properties such as adhesins, 

hemagglutinins, iron-acquisition systems, and an enteroaggregative heat-stable toxin (Ewers et 

al., 2005). It has been demonstrated that these genes are more predominant in APEC isolates 

than non-pathogenic E. coli isolates, providing a rapid tool for the identification of presumptive 

APEC (De Carli et al., 2015; Johnson, et al., 2008). 

Antimicrobial resistance (AMR) is a serious concern in both human medicine and the 

poultry industry. In recent years, similarities between extra-intestinal pathogenic E. coli 

(ExPEC) isolated from humans and  APEC from broilers have suggested that there may have 

been an exchange of transferable mobile genetic elements between pathogenic E. coli isolates 

from animals and humans (Johnson et al., 2012; Johnson, Wannemuehler, Johnson, et al., 

2008).  This potential link increases the importance of surveillance of AMR in broiler chickens. 

In Thailand and Australia, veterinarians only prescribe antimicrobials for the treatment of 

chickens and use of these agents for growth promotion is prohibited in both countries (Mehdi 

et al., 2018). 



The detailed characterisation of E. coli isolates can be done by several phenotypic and 

genotypic methods (Al-Kandari & Woodward, 2019; Mohapatra et al., 2007). These techniques 

can be used to infer the phylogenetic relatedness of strains which, in the case of closely related 

isolates, can indicate a shared epidemiological origin. Regarding genotypic methods, one of 

the easy-to-use and cost-effective techniques to find genetic relatedness among isolates is 

repetitive extragenic palindromic-PCR (rep-PCR) which is a genotypic method using 

oligonucleotide primers complementary to repetitive sequences dispersed throughout the 

genome of E.coli (Versalovic et al., 1991). 

In this study, E. coli isolates were obtained from broilers and broiler breeders with 

systemic forms of colibacillosis in Thailand and Australia. The aims of this study were to 

compare the isolates from both countries in regard to 1) the VAGs harboured by APEC isolates; 

2) antimicrobial resistance profiles of the isolates; 3) the presence of mutations in the quinolone 

resistance determining regions (QRDRs) of the gyrA, gyrB, parC and parE; and 4) the genetic 

diversity of Thai and Australian APEC by using rep-PCR. 

Materials and Methods 

Isolates 

 With regards to Thai E. coli isolates, 200 suspect colibacillosis cases from broilers and 

broiler breeders located in Central, Eastern and North-eastern areas of Thailand were sent to 

the Avian Health Research Unit, Faculty of Veterinary Science Chulalongkorn University, 

Thailand during December, 2016 and January, 2018. At the time of the study, antimicrobial 

agents have been banned as growth promoters in Thailand meaning that veterinarian can 

prescribe them for treatment of bacterial infections only.  For the Australian E. coli isolates, 89 

E. coli isolates from clinical cases of colibacillosis in broilers and broiler breeders were sourced 

from diagnostic laboratories which were located in the states of Queensland, New South Wales 



and Victoria. These isolates were collected initially between February, 2011 and January, 2018. 

In Australia, there is no agent with a claim for “growth promotion” registered for chickens (see 

https://portal.apvma.gov.au/pubcris). All Thai and Australian isolates were from affected 

internal organs of broiler or broiler breeders showing typical colibacillosis signs such as 

perihepatitis, pericarditis, peritonitis, salpingitis and/or cellulitis. 

E. coli isolation and identification 

 All samples from the Thai birds were plated onto 5% sheep blood agar (SBA) and 

MacConkey agar plates and were aerobically incubated at 37oC for 24-48 h. Presumptive pink 

colonies on MacConkey agar were sub-cultured onto eosin methylene blue (EMB) agar and 

were aerobically incubated at 37oC for 24 h. Presumptive colonies, which showed a metallic 

green sheen on EMB agar, were sub-cultured onto SBA and aerobically incubated at 37oC for 

24 h. Biochemical tests including oxidase, indole and triple sugar iron (TSI) tests were 

performed from the incubated SBA. Confirmed E. coli isolates were then stored in tryptone 

soya broth (TSB) with 15% glycerol at -80oC for further study. All media were obtained from 

OXOID (Basingstoke, Hampshire, England). 

 The Australian isolates were obtained as pure cultures from the various source 

laboratories in Australia.    

DNA extraction and detection of VAGs 

 Genomic DNA was extracted from pure bacterial cultures as previously described 

(Thomrongsuwannakij et al., 2017). Five VAGs including iroN, ompT, hlyF, iss and iutA were 

detected by using pentaplex PCR as previously described (Johnson, et al., 2008) and strains  

exhibiting carriage of ≥4 of such genes were classified as APEC. Positive samples of each gene 

were confirmed by sequencing using the relevant PCR primers after that these DNA were used 

as positive controls for PCR. 

https://portal.apvma.gov.au/pubcris


Antimicrobial susceptibility test 

Minimum inhibitory concentrations (MICs) tests were done using Muller Hinton agar 

(MHA) (OXOID) and a two-fold agar dilution technique according to the guidelines of the 

Clinical and Laboratory Standards Institute (CLSI) (CLSI, 2013). The ten antimicrobials used 

and the breakpoints for determining resistance were as follows: amoxicillin (AMX, 32 µg/ml), 

ceftiofur (CEF 2 µg/ml), chloramphenicol (CHL 32 µg/ml), ciprofloxacin (CIP 4 µg/ml), 

enrofloxacin (ENR, 2  µg/ml), gentamicin (GEN, 16 µg/ml), nalidixic acid (NAL 32 µg/ml), 

florfenicol (FLO 16 µg/ml), trimethoprim-sulfamethoxazole (SXT 4/76 µg/ml), tetracycline 

(TET, 16 µg/ml). CHL and ENR were used for Thai APEC isolates only whilst CEF and FLO 

were used for Australian APEC isolates only. The agar plates were incubated for 16-20 h at 

37oC under aerobic condition. The interpretive criteria used were those recommended for 

Enterobacteriaceae according to the CLSI standards (CLSI, 2015) except CEF was based on 

the EUCAST epidemiologic cut-off values (EUCAST, 2019). The control organism was E. coli 

ATCC 25922. All antimicrobials were obtained from Sigma-Aldrich (St Louis, MO, USA). 

Detection of mutation(s) in the QRDRs of gyrA, gyrB, parC and parE  

Thirty-four of the Thai APEC isolates, which were resistant to NAL, were subjected to 

nucleotide sequence analysis in the QRDRs of gyrA, gyrB, parC and parE using the forward 

and reverse primers as previously described (Yang et al., 2004). The PCR products were 

purified by using GenepHlowTM gel/pcr kit (Geneaid Biotech, Taiwan) and were submitted for 

nucleotide sequencing at First Base Laboratories (Seri Kembangan, Selangor, Malaysia). The 

DNA sequences obtained were compared and aligned with wild-type E. coli gyrA (Genbank 

accession number AE000312), gyrB (AE000447), parC (AE000384) and parE (AE000385), 

all obtained from GenBank database (available at: www.ncbi.nlm.nih.gov). 

http://www.ncbi.nlm.nih.gov/


Screening for the qnr genes responsible for plasmid-mediated quinolone resistance 

(PMQR) 

 Two Thai APEC isolates, which were resistant to both nalidixic acid and enrofloxacin 

but were not found to have any mutation in the QRDRs from gyrA, gyrB, parC and parE, were 

subjected to screening for qnr genes by PCR amplification of qnrA (Wang et al., 2004), qnrB 

(Gay et al., 2006) and qnrS (Gay, et al., 2006) as previously described. Positive samples of all 

qnr genes were confirmed by sequencing using the relevant PCR primers. 

Whole genome sequencing (WGS) for nalidixic acid-resistance Australian APEC isolates 

 Four Australian APEC isolates (BR 2602, BR2636, BR 2640 and BR2641), which 

were resistant to nalidixic acid, were subjected to WGS. Genomic DNA was extracted using 

the DNeasy UltraClean Microbial Kit (Qiagen GmbH, Hilden, Germany) as per the 

manufacturer’s instructions from overnight cultures grown on 5% SBA. The DNA quality was 

assessed and quantified using a NanoDrop (Thermo Fisher Scientific) spectrophotometer. A 

total of 200 ng of DNA was used for the library preparation and sequencing using the Illumina 

NextSeq 500 platform (150 bp paired ends). The sequencing was performed by the Australian 

Center for Ecogenomics at the University of Queensland. 

Four pairs of short-read data of the Australian APEC isolates sequenced for this study 

have been deposited in the NCBI Short Read Archive under Study ID 563768 

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA563768) with accession numbers from 

SRX6799142 to SRX6799145 for BR 2602, BR2636, BR 2640 and BR2641, respectively. The 

raw Illumina sequencing data were quality filtered to remove Illumina adaptor sequences and 

low quality reads using Trimmomatic (Galaxy version 0.36.6) on the Galaxy platform 

(https://usegalaxy.org.au/) (Afgan et al., 2015; Bolger et al., 2014). The qualities of the reads 

were assessed using FastQC (Galaxy version 0.72) (Andrews, 2010). Pre-processed paired-end 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA563768


reads were then assembled using SPAdes (Galaxy version 3.11.1). The assembled consensus 

of the contiguous sequences (contigs) of each bacterial genome was compared and aligned with 

wild-type E. coli gyrA, gyrB, parC and parE as mentioned earlier. 

Rep-PCR 

 The genetic diversity of the 84 Thai and 84 Australian APEC was characterised by 

using rep-PCR as previously described (Mohapatra, et al., 2007). Electrophoresis was 

performed at 70 V for 90 min through 1% agarose gel. Gels were then stained with 1 µg/ml 

ethidium bromide and were visualised by ultraviolet transilluminator. TIFF image files were 

imported into Bionumerics 6.5 (Applied Maths, Sint-Martens-Latem, Belgium). The similarity 

matrix was computed using the Dice similarity coefficient and clustering by the unweighted 

paired group method with arithmetic mean values (UPGMA). Band position tolerance and the 

optimisation coefficient were both set to 2%. Clusters were determined at the 80% similarity 

level using Bionumerics. 

Results 

VAGs found in the Thai and Australian E. coli isolates 

 Two hundred Thai and 89 Australian E. coli isolates were investigated for the presence 

of 5 VAGs. Using the criterion that E. coli which harboured at least 4 out of 5 VAGs is 

classified as APEC, the results showed that 84 E. coli isolates from each country could be 

classified as APEC isolates. As shown in Table 1, the most frequently detected genes found in 

the Thai and Australian APEC isolates were hlyF (100%) and ompT (100%), which regulate 

putative avian hemolysin (Morales et al., 2004) and an episomal outer membrane protein, 

respectively. Moreover, iroN, a gene that regulates the salmochelin siderophore receptor 

(Johnson et al., 2006) was also found in all the Thai APEC isolates. In contrast, iutA that 



regulates aerobactin siderophore receptor (Johnson, et al., 2008) was found only 78.6% in the 

Thai APEC isolates compared to 98.8% of the Australian APEC isolates. 

Phenotypic antimicrobial resistance 

 According to CLSI protocols (CLSI 2013), E. coli ATCC 25922 was used as a control 

organism, and all MIC values were within the MIC quality control ranges in all batches. 

Overall, the Thai APEC isolates were more resistant to various classes of antimicrobial agents 

compared to the Australian APEC isolates. The rate of multidrug-resistant (MDR), defined as 

being resistant to three or more antimicrobial classes, of the Thai APEC isolates was at 60.7% 

whilst Australian APEC isolates was only at 10.7% (Figure 1). Regarding the Thai APEC 

isolates, they demonstrated a high resistance rate to TET (84.5%), AMX (70.2%), SXT (51.2%) 

and NAL (40.5%). In contrast, while the Australian APEC isolates were most commonly 

resistant to the same classes of antimicrobial compounds was to similar agents as the Thai 

isolates, the rates were much lower - TET (36.9%), AMX (29.8%) and SXT (17.9%). In this 

study, all of the Australian APEC isolates were sensitive to CEF and CIP. The most common 

resistance patterns found in this study were AMX-ENR-NAL-TET (14.3%) for the Thai APEC 

isolates and TET (17.9%) for the Australian APEC isolates (Table 2). 

Genetic characterisation of mutation(s) in the QRDRs of gyrA, gyrB, parC and parE  

 The DNA sequence of the gyrA, gyrB, parC and parE genes of the 34 Thai and 4 

Australian APEC isolates, which were resistant to nalidixic acid, were submitted to Genbank. 

Genbank accession numbers of all submitted sequences are shown in a supplementary Table 1.   

 With regards to the 34 Thai APEC isolates, the MIC values for NAL ranged between 

64 and >256 µg/ml and between 0.25 and 64 µg/ml for ENR. Regarding the selected 4 

Australian APEC isolates, the MIC values for NAL ranged between 64 and >128 µg/ml and 

between 0.25 and 0.5 µg/ml for CIP. Amino acid substitutions were found in QRDRs except 



in GyrB for the Thai APEC isolates and except in ParE for the Australian APEC isolates. A 

serine-to-leucine mutation of the 83rd amino acid (Ser83Leu) and aspartate-to-asparagine, 

aspartate-to-glycine and aspartate-to-tyrosine mutations of the 87th amino acid (Asp87Asn, 

Asp87Gly and Asp87Tyr) of the GyrA protein were detected in the Thai APEC isolates. A 

serine-to-leucine mutation of the 83rd amino acid (Ser83Leu) and an aspartate-to-glutamate 

mutation (Asp678Glu) of the GyrA protein were detected in the Australian APEC isolates. A 

serine-to-isoleucine mutation of the 80th amino acid (Ser80Ile) of the ParC protein was 

dominant in the Thai APEC isolates (n = 18). A serine-to-alanine mutation of the 458th amino 

acid (Ser458Ala) was detected in the 4 out of the 34 Thai APEC isolates. With regards to the 

Thai APEC isolates, the most frequent pattern of mutations (n = 9) included a double mutation 

in GyrA (Ser83Leu, Asp87Asn) and a single point mutation in ParC (Ser80Ile). With regards 

to the Australian APEC isolates, a proline-to-alanine mutation of the 385th amino acid 

(Pro385Ala) and a serine-to-asparagine mutation of the 492nd amino acid (Ser492Asn) of the 

GyrB protein were detected. In addition, a methionine-to-isoleucine mutation of the 241st 

amino acid (Met241Ile) and an aspartate-to-glutamate mutation of the 475th amino acid 

(Asp475Glu) of the ParC protein were detected in the Australian APEC isolates. Interestingly, 

two Thai APEC isolates which were resistant to both nalidixic acid and enrofloxacin had no 

mutation in gyrA, gyrB, parC or parE. 

Screening for the qnr genes  

 Two Thai APEC isolates which were resistant to both nalidixic acid and enrofloxacin 

and were not found to have any mutation in the QRDRs from gyrA, gyrB, parC and parE were 

both positive for qnrA, qnrB and qnrS, the genes responsible for PMQR. 

Genotypic diversity by rep-PCR 



All of the 84 Thai and 84 Australian E. coli isolates were genotyped by rep-PCR. 

Sixteen distinct genotypic clusters were identified with 80% similarity (Figure 2), meaning that 

APEC isolates in this study were diverse. Clusters 2, 5, 7, 8, 12 and 16 contained APEC isolates 

from both countries. Cluster 4 was the largest group with all of the isolates being from broiler 

and broiler breeders of Australian origin. In addition, clusters 6, 9, 10, 11 and 14 also contained 

only Australian APEC isolates. In contrast, in clusters 1, 3, 13 and 15 all APEC isolates 

originated from Thailand. Overall, APEC isolated from broiler breeders cannot be completely 

separated from broiler isolates by using rep-PCR. 

Discussion 

 This study was conducted to investigate APEC isolated from broiler and broiler 

breeders in Thailand and Australia in terms of VAGs, antimicrobial resistance patterns and 

genetic diversity. Moreover, the presence of mutations in the QRDR of the gyrA, gyrB, parC 

and parE was assessed. 

 APEC are E. coli isolates that cause systemic disease in poultry. The most general 

lesions associated with colibacillosis are perihepatitis, airsacculitis and perihepatitis (Nolan, et 

al., 2013). The APEC pathotype can be defined by using phenotypic or genotypic techniques, 

but there is no single trait or group of traits that can give a definition of APEC (Dziva & 

Stevens, 2008). Many researchers have tried to identify VAGs that are mostly found in APEC 

isolates, with 5 to 13 genes being used (Ewers, et al., 2005; Johnson, et al., 2008; Varga et al., 

2018). In this study, we followed the protocol of a previous study (Johnson, et al., 2008) to 

define an APEC as an E. coli with at least 4 of the 5 most commonly recognized VAG. Typing 

of APEC by using VAGs is a simple and practical approach in a routine laboratory compared 

to other methods such as serotyping which has limited application in Thailand and Australia as 

there is no central reference laboratory that offers this technology in both countries. While there 



is a PCR-based technique to subtype O-serogroup of E. coli (Iguchi et al., 2015), the method 

requires over a hundred primers for complete serotyping, a requirement which is not practical. 

 The 5 VAGs used in this study were related to adhesion, iron acquisition and serum 

resistance which are characteristic of the APEC pathotype (Delicato et al., 2003). Both the Thai 

and Australian APEC isolates harboured these VAGs at a high prevalence with a lowest 

prevalence of iutA found in the Thai APEC isolates at 78.6%. This finding agrees with studies 

from Canada (Varga, et al., 2018), Australia (Cummins et al., 2019); Brazil (Barbieri et al., 

2013), Korea (Jeong et al., 2012) and the USA (Johnson, et al., 2008).  

After testing the presence of 5 VAGs, the 84 APEC isolates from both Thailand and 

Australia were examined for their antimicrobial resistance profiles. We found that the Thai 

APEC were generally more resistant to various antimicrobial agents such as TET, AMX, SXT, 

NAL, ENR and CHL than the Australian APEC isolates. In addition, the MDR rate of the Thai 

APEC isolates was 60.7% compared to 10.7% of the Australian APEC isolates.  

 AMR is a serious concern in both human medicine and the poultry industry. It is 

accepted that antimicrobial use at the farm level can increase the risk of antimicrobial resistance 

development in both commensal and pathogenic enteric bacteria in food animals (Ozawa et al., 

2008; Varga et al., 2009). E. coli infections are commonly found as secondary bacterial 

infections in chickens and in both countries only veterinarians can prescribe therapeutic 

antimicrobials to chickens. In particular, in Australia, there is no agent with a claim for “growth 

promotion” registered for chickens (see https://portal.apvma.gov.au/pubcris) meaning that at 

the time of sample, the antimicrobial agents were not being used as growth promoters. 

However, the AMR rate of the Thai APEC was high for some antimicrobial agents. In Thailand, 

the drug of choice for the treatment of colibacillosis is typically a drug in groups of beta-

lactams, tetracyclines or sulfonamides; it is therefore unsurprising that these are the classes of 

https://portal.apvma.gov.au/pubcris


antimicrobial compounds to which isolates were most commonly resistant. This finding is in 

agreement with previous studies from China (Dou et al., 2016) and Japan (Ozawa, et al., 2008) 

where a high prevalence of AMR was found to antimicrobial agents that frequently used to 

treat colibacillosis. In addition, CHL has been banned in food animals in both countries for 

decades, but resistance to this agent could be found, presumably because of the effects of co-

selection of resistance from antimicrobial agents that are currently available and approved 

(Harada & Asai, 2010). The highest prevalence of AMR in the Australian APEC isolates was 

most common in TET (36.9%), AMX (29.8%) and SXT (17.9%). Although TET, AMX and 

SXT are also common antimicrobial agents for treating colibacillosis in Australia, the 

resistance rates were clearly lower than the rate of the Thai APEC isolates. This evidence might 

suggest that there is very prudent use of antimicrobial agents in Australia and highlights the 

need for judicious and sustainable use of antimicrobial agents in Thailand. In addition, all of 

the Australian APEC isolates in this study were susceptible to CEF and CIP which were similar 

to a previous study conducted in Australia showing that they do not carry AMR genes 

conferring resistance to these compounds (Cummins, et al., 2019). The results suggest that 

antimicrobial use in Australian poultry is more limited than occurs in poultry in Thailand. It 

would appear important that government regulators, veterinarians and farmers in Thailand 

address the issue of a more limited use of these agents to minimise the promotion of 

antimicrobial resistance. 

 Fluoroquinolone resistance (FQR) has rapidly increased in many countries worldwide 

and is a major public health concern (Ozawa, et al., 2008; Yang, et al., 2004). FQR is typically 

caused by alterations in the target enzymes (DNA gyrase and topoisomerase IV) and by 

changes in drug entry and efflux (Jacoby, 2005). A previous study (Bagel et al., 1999) 

identified that all quinolone-resistant isolates possessed typical mutations in the topoisomerase 

genes, gyrA and parC. In this study, PCR and Sanger sequencing were used to identify the 



DNA sequence of the gyrA, gyrB, parC and parE genes of the Thai APEC isolates using a short 

sequence (<250 base pairs, bp) for each gene. In contrast, for the Australian APEC isolates, 

WGS was used to compare these genes compared with a wild type of E. coli. The size of the 

gyrA, gyrB, parC and parE genes of wild type E. coli ranged between 1,893 and 2,628 bp 

meaning that the use of WGS for detecting point mutations possibly give more opportunity to 

find novel mutations on these genes.  

 With regards to the Thai APEC isolates, isolates which possessed double point 

mutations in gyrA together with a single or double mutations in parC or parE exhibited 

resistance to both NAL (MIC values > 256 µg/ml) and ENR (MIC values = 8-64 µg/ml). Yang 

et al. (2004) reported that double gyrA mutations together with mutations in parC conferred 

high-level resistance to FQs. Interestingly, there were two Thai APEC isolates which were 

resistant to NAL and ENR and that lacked any mutations in the gyrA, gyrB, parC and parE 

genes; but they were positive for qnrA, qnrB and qnrS which are responsible for PMQR. This 

confirms that, besides QRDRs mutations, PMQR also plays an important role in FQ resistance 

as previously reported (Gay, et al., 2006; Wang, et al., 2004). Four Australian APEC isolates 

that were resistant to NAL but susceptible to CIP, had double point mutations in gyrA, gyrB 

and parC meaning that these point mutations might not affect CIP resistance characteristics. 

Although mutations in gyrB and parE have been associated with FQ resistance, the frequency 

of mutation is much lower compared to those for gyrA and parC (Yang, et al., 2004). 

In conclusion, screening for the VAGs discussed serves as a useful and rapid approach 

in the identification APEC. Even though only veterinarians can prescribe antimicrobial agents 

for bacterial infections in chickens in both countries, a high antimicrobial resistance rate was 

found in Thai APEC. As APEC may cause cross-resistance with human enteric pathogens,  

prudent use of the antimicrobial agents  in veterinary medicine is highly recommended. 
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Figure 1. The frequency of resistance to ten antimicrobial agents in Thai APEC (n = 84) and 

Australian APEC isolates (n = 84). AMX, amoxicillin; CEF, ceftiofur; CHL, chloramphenicol; 

CIP, ciprofloxacin; ENR, enrofloxacin; GEN, gentamicin; NAL, nalidixic acid; FLO, 

florfenicol; SXT, trimethoprim-sulfamethoxazole; TET, tetracycline; MDR, multidrug 

resistance; n/d, not done. 
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Figure 2. Phylogenetic analysis representing rep-PCR of the Thai (n = 84) and Australian 

APEC (n = 84) isolated from broilers and broiler breeders at the 80% cutoff genetic similarity. 

The similarity matrix was computed by using Dice similarity coefficient and clustering by the 

UPGMA. Band position tolerance and the optimization coefficient were both set to 2% using 

Bionumerics. 

 

Table 1. Prevalence of VAGs in the Thai and Australian APEC strains. 

Samples  

% isolates harboured 5 major VAGs 

iutA iss hlyF ompT iroN 

Thai APEC (n = 84) 78.57 98.81 100 100 100 

Australian APEC (n = 84) 98.81 100 100 100 97.62 

 

Table 2. Antimicrobial resistance pattern of the Thai (n = 84) and Australian (n = 84) APEC 

strains. 

Source Antimicrobial resistance pattern No. of strains (%) 

Thai APEC  AMX-ENR-NAL-TET 12 (14.29) 

 
AMX-TET 11 (13.10) 

 
SXT-TET 9 (10.71) 

 
AMX-CHL-SXT-TET 8 (9.52) 

 
AMX-SXT-TET 5 (5.95) 

Australian APEC TET 15 (17.86) 

 
AMX-SXT-TET 7 (8.33) 

 
AMX-NAL 7 (8.33) 

  SXT-TET 6 (7.14) 



AOnly the antimicrobial resistance patterns represented by at least five isolates are shown. 

AMX, amoxicillin; CHL, chloramphenicol; DOX, doxycycline; ENR, enrofloxacin; TET, 

tetracycline; SXT, trimethoprim–sulfamethoxazole. 

 

 

 

 



Table 3. Amino acid substitutions in the QRDRs and the MIC for corresponding FQ resistance profiles among the Thai (n = 34) and Australian (n 

= 4) APEC strains. 

No. of 

isolates 

Amino acid substitution(s)*   MIC range (µg/ml) 

GyrA GyrB ParC ParE   NAL  ENR CIP 

Thai APEC        
 

2 - - - -  128->256 4-32 n/d* 
7 Ser83Leu - - -  64->256 0.25-8 n/d 
1 Asp87Gly - - -  32 0.5 n/d 
2 Asp87Tyr - - -  64 0.25 n/d 
1 Ser83Leu - Ser80Ile -  >256 4 n/d 
1 Ser83Leu - - Asp475Glu  256 0.5 n/d 
1 Ser83Leu, Asp87Asn - - -  >256 8 n/d 
9 Ser83Leu, Asp87Asn - Ser80Ile -  >256 16-32 n/d 
2 Ser83Leu, Asp87Tyr - Ser80Ile -  >256 16 n/d 
1 Ser83Leu, Asp87Asn - Ser80Arg -  >256 8 n/d 
1 Ser83Leu, Asp87Asn - - Ser458Ala  >256 64 n/d 
3 Ser83Leu, Asp87Asn - Ser80Ile Ser458Ala  >256 16-64 n/d 
1 Ser83Leu, Asp87Asn - Ser80Ile Ile464Phe  >256 32 n/d 
1 Ser83Leu, Asp87Asn - Ser80Ile, Glu84Gly -  >256 64 n/d 
1 Ser83Leu, Asp87Asn - Ala56Thr, Ser80Ile -  >256 16 n/d 

Australian 

APEC         
3 Ser83Leu, Asp678Glu Pro385Ala, Ser492Asn Met241Ile, Asp475Glu -  64->128 n/d 0.25-0.5 
1 Asp678Glu Pro385Ala, Ser492Asn Met241Ile, Asp475Glu -   128 n/d 0.25 

*n/d, not done. 




